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ABSTRACT

The discrete prolate spheriodal (DPS) filter is ome of the class of non-
recursive finite impulse response (FIR) filters. The DPS filter, first
introduced by TUFTS and FRANCIS (1970), is superior to other filters in this
class in that it has maximum energy concentration in the frequency passband and
minimum ringing in the time domain, We give a mathematical development of the
DPS filter properties, provide information required to construct the filter, and
compare the properties of this filter with those of the more commonly used
filters of the same class. We note that use of the DPS filter allows for
particularly useful statements of data time/frequency resolution "cell" values
and that overall it forms an especially useful tool for digital signal
processing.

INTRODUCTION

The reduction of digitized data to final form usually involves what is
broadly described as digital filtering. This process may be applied in either
the domain in which sampling occurs (e.g.,, time or space) or in the
corresponding transform domain (e.g., frequency or spatial frequency). The net
result of digital filtering is always to "smooth" or restrict the frequency
content of the data. However, it is often very important that this smoothing or
filtering process be done with minimum and well-understood distortion to the
results in both domains. An example of an often misused filter is the equal
weight ("square") running average which "smooths" in the domain of application
but results in a (sin x/x)“ like ‘passband shape in the transform domain. The
(sin %/x)2 behavior may have unacceptable sidelobe levels and/or spacing.

The difficulty of minimizing distortion due to filtering starts with a
statement of the criterion for judging when a filter is most satisfactory. We
will follow the approach of TUFTS and FRANCIS (1970), PAPOULIS and BERTRAN
(1972), and SLEPIAN (1978) in which an optimum finite (length) impulse response
(FIR) non-recursive filter is derived on the basis of maximum energy concen-
tration in the passband of the filter relative to energy in the total bandpass
up to the Nyquist frequency wy(=2n/2t with r the sampling interval). Choice of
this energy concentration criterion leads to filters described in terms of
discrete prolate spheriodal sequences and wave functions. These sequences and
wave functions have many desirable properties which were first investigated in
the continuous case by SLEPIAN and POLLAK (1961), LANDAU and POLLAK (1961,
1962), and SLEPIAN (1964).

This paper is basically tutorial in that our major goals are to demonstrate
the usefulness of FIR filters based on maximum passband energy concentration and
to supply the information necessary for the "construction" of these filters. We
do however introduce several apparently new results which prove ugeful in
numerically solving the matrix equations which describe the filter., In the
following section we develop the general equations for symmetric FIR digital
filters and then obtain solutions based on the energy concentration criterion.
Next we demonstrate that these filters have features which are desirable
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especially when compared with more traditional filters, and finally, we present
a summary and conclusions,

MATHEMATICAL DERIVATIONS
(a) A General Non-Recursive FIR Filter

Using the time and frequency domains, a tapped delay line implementation of
a non-recursive FIR filter acting on amalog signal x(t) is shown schematically
in Figure 1. The resultant output signal has the form

K

ye) = 7§ a_x(t-nt) (1)
=-K

where the coefficients a, are real and where the time reference is, for later
convenience, at the center of the delay line. Assuming that the Fourier trans-—
form of x(t) +>X(w) exists we Fourier transform (1) and find

Y(w) = Hw) + X(w) (2)
where

K .
Hw) = [ a e ™" (3)
n=-K

is the "voltage" transfer function and j = V-1. The corresponding "power"
transfer function is

¥ -3 (n-m)
S(w) = H(w) « H¥(w) = J a a e J\NTIIOT
n,m=-K onm
K 9 n-1
= 7 [an +2 ) aa cos(n-m)uwrt] (4)
n=-K ==K
IN  __delay line—

X( t+K7 )

v(t)

Figure 1. Block diagram of the non~recursive FIR filter
described by Equation 1.
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while the inverse Fourier transform of (3) is

K

h(t) = J a 8(t-nt1) (5)
n=-K

the filter impulse respomse with 6(t') the unit impulse. Note that h(t) con~
volved with x(t) yields equatiom (1).

The filter described by (3) or (5) becomes a digital filter if we uniformly
and instantaneously sample y(t) at intervals of 7 time. Then (1) becomes

Yj = Z-K anxj_n’ (6)

where the index j refers to consecutive members of the set of sampled signals.
If we restrict x(t) to be bandlimited to the Nyquist frequency (27/2t) or less,
then the sampling/filtering process occurs without aliasing.

(b) Choice of Coefficients

Equations (3) or (5) describe the effects of the filter on an input signal
given a particular set of coefficients {a_}. These coefficients are often
chosen such that the digital filter charalteristics are similar to ome of
various common analog filters (e.g., the "ideal" filter). The process of
synthesizing these filter characteristics often involves smoothing (windowing)
of the resultant coefficient sequence to suppress ringing (BLACKMAN and TUKEY,
1958; HAMMING, 1977).

As mentioned in the introduction, we propose to choose the sequence {an}
by maximizing the energy concentration of S(w) (equation (4)) in some interval

[w.,w.] on [~w_,w_] where w_. is the filter "cutoff" frequency. Thus let
c n c

c n

® W
a=f s do/f " sw) dw N
-0 -0

c n
and find {ap} such that o is maximized. Substituting equation (4) for S(w) in
(7) and performing the integrations yield

12{: aa sin (n-m)7me
nop=-K O W (n=-m) ™
2 (8)
LS 2
1 a
n=-K

where ¢ = wclmn. If we define {a_} as elements of vector a then (8) becomes

a¥ B ca-aal ca=0 (9
where each a has (2K + 1) elements and the elements of matrix E, ere

e = sin (n-m)me (10)

mn (n~m)w

-K £m, n £K

We are thus searching for a such that o is maximum. From Lagrange
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multiplier theory, it is clear that (9) is satisfied by the set of (2K + 1)
orthonormal eigenvectors a(l) and the corresponding eigenvalues Aj of the
system

(-0 -2 =0 (11)

where I is the identity matrix. We choose the elements of gﬁO) the
eigenvéctor associated with ), the largest eigenvalue, as coefficients of our
"optimum" filter. That is, 320) maximizes equation (8) with o = A, for the

K and ¢ (i.e., mc) values in question,

SLEPIAN (1978) refers to these eigenvectors and corresponding H(w)'s as
discrete prolate spheriodal sequences and wave functions, respectively. He
demonstrates that if we order the eigenvalues according to magnitude,

1>2 >AL > ees > A9 >0

and if an(i) is the n'th element of the eigenvector correspondiﬁg to X; then
X , . 1 i=3j
y an(1)a @ -5 =
=-K " H 0 i4]

Letting bn(j) be the n'th element of the eigenvector corresponding to eigen—
value X; calculated for wc‘= wy T, then (SLEPIAN, 1978; section 2.2)

NECIEICINRC

an(i) - plnl bn(ZK‘i) 12

la] <&

Slepian also notes that the discrete prolate spheroidal wave functions U(w)
satisfy a Sturm-Liouville equation of the form

ii—[cosmr - cosmel AU 12 [R(K+1)coswt - 6] U = 0 (13)
dw dw
where 6 is the eigenvalue (different from A} corresponding to a particular

wave function and all other parameters are as before, Substituting H(w) (=U)
from (3) into (12) we find

1)
LI . =
(EK Bi ;) a 0 (14)
_ where for In] <K
1
E~(K+m) (R-m+1) m=a-120
e '=4{ m? cosye m=n (15)
mn
1 k) ®ml)  me=ne1gx
| 0 otherwise
or equivalently
1 2 1 _
5 (K+n) (K—n+l)an_1 + (n“cosne ei)an + 2(K n) (K+n+1)an+l =0 (16)
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The matrix E' is tridiagonal and thus equation (14) is much easier to
solve numerically than equation (11). Equation (14) yields the same normalized
eigenvectors as (11) however the corresponding eigenvalues are different
although we still seek the eigenvector corresponding to the largest eigenvalue
8ge Since we are interested only in a(0) which is symmetric we can
essentially halve the size of E' by invoking symmetry (see equation (12))
which yields ' -

-6, aj + K(K+1)al =0
plus equation (16) with 1 £ n £ K. The compact form of (14) yields only eigen-
values corresponding to "even" eigenvectors and the resultant a‘'s may be
normalized such that al-a = 1.

From equation (14) we find that for w_ = 0, 6 = K(K+1), and a (|n]| <K) =
1 whilg for w, = wy (i.e., ¢ = 1) we find iusing the w, = 0 case and (12)) that
60 = K< and K - (n=1)]
a_=a IR - (o-D)]

n n-1 K+n

1 <n <K

2 Kz for all 0 < w_ < w, and that

We observe experimentally that K(K+l) > 8s e S Uy

ao(o) > al(o) > 32(0) 2 vee 2 aK(O) >0

1> ai(o) (wc) > ai(o) (mc = q )

N

where a.(o)(wc) refers to the i'th component of the eigenvector corresponding
to the Iargest eigenvalue for 0 £ w. £ my. The range constraints on the value
of 0 may be used in finding 0, from (14).

COMPARISON OF FILTER PROPERTIES

In the previous section we showed that FIR filters with discrete prolate
spheriodal sequences as coefficients (see equation (1)) have maximum energy
concentration in the passband, These filters are known as discrete prolate
spheriodal (DPS) filters and in this section we compare their properties with
those of more traditiomal FIR filters,

These "traditional"™ filters are all based on various windowing (weighfing)
functions applied to the coefficients of the infinite Fourier series representa-
tion of the ideal low-pass filter. The coefficients of this series .are

c = sin nme

n ow

n=0,+1,¥2, ,,, (17)
£ = wc/wn

and the windowing function W(n) is such that W(n) = 0 for |n| 2 E thus
truncating the series so that the resultant transfer function becomes

« K .
H (o) = ) W(a)c e I7° (18)
W n=—K n
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The W(n) (-K < n < K) are chosen to minimize in some sense the ringing (Gibb's
phenomena) which results from truncation of the series representation of the
ideal lowpass filter (HAMMING, 1977; Chap. 5, or RABINER and GOLD, 1975; Chap.
3). In this dlscu3310n, we compare the DPS filter with the Hy(w) (equatxon
(18)) of same length using rectangular, Kaiser, Von Hann, Dolph-Chebyshev, and
Hamming windows., The W(n) corresponding to these windows are given or
referenced in Table 1 and are dlscussed in more detail by HAMMING (1977) and
RABINER et al. (1979).

Figures 2 and 3 compare the frequency response (in dB) plotted versus
normalized frequency £ (Nyquist frequency fy= 0.5) and impulse response
envelope plotted versus time in samples for all six filters., For this compari-
son we choose K = 15 (total length 31) and adjust filter parameters such that
the -3 dB level of each filter occurs near f = 0,05, The filters appear in
order of, in our opinion, acceptability with the rectangular windowed filter
least acceptable and DPS filter most acceptable.

The frequency domain distortion of a signal spectrum is just the filter
frequency response as shown in Figures 2 and 3, However, the time domain
distortions due to the impulse responses are not so obvious, 1In Figure 4, we
show the effects of these filters in the time domain on a square wave plus
Gaussian distributed noise. As expected, all filters except the DPS filter
"ring". The DPS filter "smooths" the input signal while retaining a. "smooth"
frequency domain behavior.

To aid in understanding the "evolution" of the DPS filter, we show in
Figure 5 the DPS filter frequency response characteristics for normalized cut~-
off frequency f. = 0.2 as K is increased from 1 (3 coefficients) to 8 (17
coefficients). Recall that in each case energy concentration in the passband
(f £ 0.2) is the maximum possible for the number of coefficients used.

SUMMARY AND CONCLUSION

We have investigated the properties of the discrete prolate spheroidal
filter relative to other common FIR filters. To accomplish this comparison we
first derive the general properties of FIR filters and then specialize these

Table 1. Weighting coefficients of various windows
(w(fa}l > K) = 0 for all windows

RECTANGULAR WINDOW: W(n) =

KAISER WINDOW:

I (a1 - (n/K)%)

Win) = Io(a)

o0

n
where Io(x) =1+ nzl [S§é%l_]2

and we use o = 3.395 (40 dB minimum stopband attenuation)

1 + cos wn/K
VON HANN WINDOW: W(n) = — 5 ———

DOLPH-CHEBYSHEV WINDOW: See HELMS (1968) and RABINER et al. (1979)

HAMMING WINDOW: W{n) = 0.54 + 0.46 cos {(2m/(KR-1))
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properties to the case of maximum energy concentration in the filter passband.
The condition of maximum energy concentration gives rise to an eigenvalue
problem which has the discrete prolate spheroidal sequences (SLEPIAN, 1978)'as
eigenvector solutions. The eigenvector corresponding to the largest eigenvalue
is used as the coefficient sequence in the DPS filter.

SLEPIAN (1978) also points out that the prolate spheroidal wave functions
satisfy a form of the Sturm-Liouville equation, This fact leads to a second
eigenvalue/eigenvector problem which is much simpler to solve numerically than
the first problem. We note that the elements of the eigenvector (a(o))
corresponding to the largest eigenvalue (6 or A ) are symmetric around the
center value (a ) and that

an_1<°> 2.9 0 (1 <0 < ®).

-
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Figure 2. Filter frequency response (dB) plotted versus normalized.
frequency (Nyquist frequency fyt+).5) and corresponding impulse
response envelope plotted versus time in samples for rectangular,
Kaiser and von Hann windows of length 31 (see Equation 18 and Table
1). 1In all cases the normalized 3 dB frequency is about 0.05.
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When used, DPS filters have several features which we feel make them
superior to more standard FIR filters., Specifically, the DPS filter is "smooth"
in both domains and thus distortion of the signal is minimal and easily
described in both domains. Thus for example, after removing high frequency
noise, a time domain feature may be more easily "restored" by deconvolving the
DPS impulse response than by deconvolving the other sin x/x like impulse
responses., Another useful feature of DPS filters is that descriptions of time
and frequency resolutions of published data can be more readily appreciated and
used by the reader. In fact, we suggest that the DPS filter might form a basis
for standardization of information concerning the "resolution cells™ of data.
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Figure 3. Similar to Figure 2, but for Dolph-Chebysev and Hamming
windows and the prolate spheroidal filter. The normalized cutoff
frequency of the prolate spheroidal filter is 0.2. The filters
in Figures 2 and 3 are ordered according to overall quality with,
in our opinion, the rectangular window filter worst and prolate
spheroidal filter best.
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Figure 4. We compare the time domain effects of the various filters on a
square wave plus Gaussian distributed noise. Note that all filters ex-
cept the prolate spheroidal filter 'ring" and that the rectangular window
filter rings most with the Kaiser window next while the Dolph-Chebysev,
Hamming, and von Hann windows are similar in this case.
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